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Picking Neural Activations for
Fine-Grained Recognition

Xiaopeng Zhang, Hongkai Xiong, Senior Member, IEEE, Wengang Zhou , Weiyao Lin, Senior Member, IEEE,
and Qi Tian , Fellow, IEEE

Abstract—It is a challenging task to recognize fine-grained
subcategories due to the highly localized and subtle differences
among them. Different from most previous methods that rely on
object/part annotations, this paper proposes an automatic fine-
grained recognition approach, which is free of any object/part
annotation at both training and testing stages. The key idea
includes two steps of picking neural activations computed from
the convolutional neural networks, one for localization, and the
other for description. The first picking step is to find distinctive
neurons that are sensitive to specific patterns significantly and
consistently. Based on these picked neurons, we initialize positive
samples and formulate the localization as a regularized multiple
instance learning task, which aims at refining the detectors via
iteratively alternating between new positive sample mining and
part model retraining. The second picking step is to pool deep
neural activations via a spatially weighted combination of Fisher
Vectors coding. We conditionally select activations to encode them
into the final representation, which considers the importance
of each activation. Integrating the above techniques produces
a powerful framework, and experiments conducted on several
extensive fine-grained benchmarks demonstrate the superiority of
our proposed algorithm over the existing methods.

Index Terms—Fine-grained recognition, regularized multiple
instance leaning, spatially weighted Fisher Vectors (SWFV),
weakly supervised part discovery.

I. INTRODUCTION

F INE-GRAINED recognition aims at discriminating usu-
ally hundreds of subcategories belonging to the same
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Fig. 1. How do we tell a blackbird from a cowbird? This paper proposes a
weakly supervised fine-grained recognition method, which demands only the
labels of training images. Given a test image, we first localize the discriminative
parts with automatically discovered detectors (only one part detector is shown).
For each detected part, a new kind of feature named SWFV-CNN is extracted
for representation. (a) Test Image, (b) Part Detection, (c) SWFV-CNN.

basic-level category. Typical applications include discriminat-
ing different kinds of birds, dogs, and cars etc. It lies between
the basic-level category classification (e.g., categorizing bikes,
boats, and cars etc. in Pascal VOC [1]) and the identification of
individual instances (e.g., face recognition). An inexperienced
person can easily recognize basic-level categories such as bikes
or horses immediately since there exist a large amount of cues
for discriminating them, while it is difficult for him/her to tell a
blackbird from a cowbird (c.f. Fig. 1) without specific guidance.
As a matter of fact, fine-grained sub-categories often share the
same parts (e.g., all birds should have wings, legs, etc.), and
are often discriminated by the subtle differences in texture and
color properties of these parts (e.g., only the breast color counts
when discriminating some similar birds). Hence, localizing and
describing object and the corresponding parts become crucial
for fine-grained recognition.

In order to localize the discriminative parts, most existing
methods explicitly require object or even part annotations at both
training and testing stages [2]–[5]. However, such a requirement
is demanding in practical applications. As a compromise, some
methods consider object/part annotations at only training stage
but not at testing time [6], [7]. However, it is still time consuming
to acquire these annotations, especially for large scale recogni-
tion problems. Hence, one promising research direction is to free
us from the tedious and subjective manual annotations for fine-
grained recognition, which demands automatic part discovery.
However, automatic part discovery is a classical chicken-and-
egg problem: without an accurate appearance model, examples
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of a part cannot be discovered, while an accurate appearance
model cannot be learned without part examples.

Feature representation is another key issue for fine-grained
recognition. Recently, Convolutional Neural Network (CNN)
has been widely used for feature representation. However,
there exist two challenges when directly applying CNN to
fine-grained tasks. First, traditional CNN requires fixed size
of rectangle as input, which inevitably includes background
information. However, as demonstrated in [2], [8], background
is unlikely to play any major role for fine-grained recognition
since all sub-categories share similar backgrounds (e.g., all
birds are usually found in trees or fly in the sky). Second,
traditional CNN captures the spatial layout of an image, which
may be useful for representing the shape of an object, while it
may be not useful for describing fine-grained texture details.

Based on these observations, this paper presents a weakly
supervised fine-grained recognition method, which is free of
any object/part annotation at both training and testing stages.
Suppose we are faced with one challenging task, say, telling a
blackbird from a cowbird (c.f. Fig. 1). As our first contribution,
an automatic part detection strategy is proposed to localize the
discriminative parts (Section III). The detection method consists
of two main points. First, an automatic initialization method is
developed for detector learning, which is based on the selectivity
of CNN neurons. The key insight of the initialization approach is
to elaborately pick deep neurons with significant and consistent
responses. Second, a set of detectors are learned via a regularized
multiple instance learning strategy. We introduce a regularized
term to consider the reliability of each positive sample. The
learned detectors tend to discover discriminative and consistent
patches that are helpful for part-based recognition.

There exist previous methods that make use of neuron acti-
vations for part discovery [9], [10]. The method of [9] directly
groups all the intermediate neurons of a CNN via spectral clus-
tering, and performs part detection via the grouped neurons.
However, the intermediate neurons are implicitly trained and
most of them are not discriminative. [10] initializes part loca-
tions via the neural activation maps, and models spatial constel-
lations via deformable part models, while it is very hard to model
highly deformable objects such as birds and dogs. Hence the de-
tection performance is limited. Based on the observations, we
propose a picking strategy to only select the distinctive neurons
(Section III-A). Furthermore, since these neurons are implicitly
trained from the network, which are weak in generalization. We
propose to enhance these weak detectors (neurons) via a regu-
larized MIL approach. Experimental results have demonstrated
the advantages of our proposed method over the related methods
[9], [10].

As the second contribution, we design a new kind of fea-
ture that is suitable for fine-grained representation (Section IV).
The deep neural activations of a CNN are regarded as local
descriptors, and encoded via Spatially Weighted Fisher Vector
(SWFV-CNN). The key insight is that not all neural activa-
tions are equally important for recognition, and the goal is to
highlight the activations that are crucial for recognition and
discount those that are less helpful. To this end, a picking strat-
egy is proposed to conditionally select descriptors based on a

saliency map, which indicates how likely a pixel belongs to the
salient regions. As shown in Fig. 1(c), irrelevant backgrounds are
masked out and only the salient part around eyes are highlighted,
which represent the most distinctive details to tell the two
birds apart.

Previous approaches also consider fisher vectors over deep
features [11], [12]. The differences are: first, previous ap-
proaches often treat deep features as local descriptors and en-
code them into a global image representation, while we record
the mapping relationships between the original images and con-
volutional descriptors, and encode them into Fisher Vectors
by part. Second and most importantly, different from previous
approaches [11], [12], which treat each descriptor equally im-
portant, we propose a new kind of features named SWFV-CNN,
which highlights the descriptors that are crucial for recognition
and discounts those that are less helpful via a weighted com-
bination of Fisher Vectors. Experimental results demonstrate
that SWFV-CNN performs consistently better than FV-CNN for
fine-grained recognition, and is complementary with traditional
CNN to further boost the performance.

Framework overview: An overview of the proposed frame-
work is shown in Fig. 2. Our approach consists of two picking
steps. The first step aims at picking deep neurons that respond to
specific patterns significantly and consistently. Based on these
neurons, we select positive samples that are semantically similar
and train a set of discriminative detectors. An iterative multiple
instance learning procedure is executed, which alternates be-
tween selecting positive samples and training classifier, while
applying cross-validation at each step to prevent classifier from
overfitting the initial positive samples. The trained detectors are
used to discover parts for recognition. The second step is to pick
CNN activations via Spatially Weighted combination of Fisher
Vectors, which we refer to SWFV-CNN. We compute spatial
weights with part saliency maps, which indicates how likely a
pixel belongs to a salient part. The part saliency map is used to
weight each Fisher Vector and pool it into the final representa-
tion, which considers the importance of each descriptor.

This is an extension of our earlier work [13]. In this paper, we
extend [13] in a number of ways. First, we propose a systematic
picking strategy for object-level and part-level initialization, re-
spectively. Second, we formulate the weakly supervised detector
learning as a regularized multiple instance leaning issue, which
aims at learning more generalized detectors. Third, for the the-
ory part, we provide rationales for regularized multiple instance
detector learning and SWFV-CNN based fine-grained descrip-
tion. The last but not least, more extensive experiments are
presented, including new results on cars-196 [14] and aircrafts
[15], ablation studies on the recognition performance versus the
number of detectors, and the performance analysis step by step,
which demonstrate the necessity of each module.

The rest of this paper is organized as follows. Section II
describes related works on fine-grained recognition. The de-
tails of our proposed part discovery strategy are elaborated in
Section III. In Section IV, we describe the Spatially Weighted
FV-CNN. Experimental results and discussions are given in
Sections V and VI, respectively. Finally, Section VII concludes
the paper.
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Fig. 2. Overview of our developed framework. The approach consists of two picking steps. The first step aims at picking deep neurons that are sensitive to specific
patterns significantly and consistently. Based on these picked neurons, we choose positive samples and train a set of discriminative detectors via a regularized
multiple instance leaning. The second step is to pick neural activations via spatially weighted Fisher Vector (SWFV).

II. RELATED WORKS

Fine-grained recognition is a challenging problem and has
recently emerged as a hot topic, typical applications include dis-
criminating different kinds of birds [16], dogs [17], cars [14],
and handbags [18] etc. In the following, we organize our discus-
sion related to fine-grained recognition within two tasks: part
localization and feature representation.

A. Part Localization

As fine-grained datasets are often provided with extra anno-
tations of bounding boxes and part landmarks [16], [19], most
previous methods rely on these annotations more or less.

Early methods assume that annotations are available at both
training and testing time. Among them the strongest supervised
setting is to use both object and part-level annotations [3],
[20]. Obviously, this kind of setting is demanding and a more
reasonable setting only assumes the availability of object
bounding boxes. Chai et al. [2] introduce techniques that
improve both segmentation and part localization accuracy by
simultaneous segmentation and detection. Bergs et al. [20]
propose to automatically detect part locations with a consensus
of exemplars, and Goering et al. [21] transfer part annotations
from objects via performing a simple but very effective global
matching and a subsequent ensemble learning. Huang et al. [22]
propose to learn a fully convolutional network to locate multiple
object parts based on the strong part annotations, and encode
object-level and part-level cues via a two-stream classification
network. Zhang et al. [4] propose to train two sub-networks,
one for localization and the other for classification.

Later methods require annotations only during training, and
no knowledge of annotations at testing time. These methods are
supervised at the level of object and parts during training. Zhang
et al. [7] generalize R-CNN [23] framework to detect parts as
well as the whole object. Branson et al. [24] train a strongly su-
pervised model in a pose normalized space. Further on, Krause
et al. [6] propose a co-segmentation method, which only needs
object-level annotations at training time, and is completely un-
supervised at the level of parts.

Recently, there have been some methods that aim at a more
general condition, e.g., without expecting any information about
the location of fine-grained objects, neither during training nor
testing time. This level of unsupervision is a big advance towards
making fine-grained recognition suitable for wide deployment.
Xiao et al. [9] propose to use two attention models with deep
convolutional networks, one to select patches to a foreground
object, and the other to localize discriminative parts. Simon et.al.
[10] propose to localize parts with a constellation model, which
incorporates CNN into the deformable part model [25]. Zhang
et al. [26] generate multiple scale proposals, and select useful
ones based on the importance for classification. Lin et al. [11]
make use of bilinear models for network training, which outputs
a bilinear vector that are the outer product of two sub-networks.
Jaderberg et al. [27] train an end-to-end spatial transform net-
work to discover and learn part detectors in a data-driven manner
without any additional supervision.

Our approach belongs to the last setting, which is free of any
object/part-level annotation at both training and testing stages.
Different from previous approaches, we explicitly learn a set
of discriminative detectors via a regularized multiple instance
learning strategy [28]. Our part localization approach belongs
to a family of weakly supervised detector learning, which have
been widely studied for part discovery [29], [30]. Different from
these methods that often employ some heuristic methods such
as k-means for initialization, we propose a picking strategy to
select patches that are consistent in appearance.

Our method is also related with multiple instance learning
(MIL), which is a particular form of weak supervision. In MIL,
labels are assigned to bags (sets of patterns), instead of individ-
ual patterns. The positive bags are sets of instances containing
at least one positive example, while the negative bags are sets of
instances that are all negative. MIL was originally introduced to
solve a problem in biochemistry [31], and a variety of MIL al-
gorithms have been developed over the past years. The simplest
method is to transform MIL into a standard supervised learning
problem by applying the bag’s label to all instances in the bag
[32]. However, such method assumes that the positive examples
are rich in the positive bags. Andrews et al. [28] present a new
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formulation of MIL as a max-margin SVM problem. Different
from previous methods, we introduce a regularized term into
MIL, which consider the positiveness of each positive bag, and
obtain improved localization performance.

B. Feature Representation

Feature representation is one of the most central research di-
rections over the past decades. The most widely used descriptors
are color SIFT, gray SIFT plus color histogram [2], [33], [34]
extracted from local patches. Boureau et al. [35] learn semantic
representations of images by aggregating neighboring descrip-
tors to form micro-features or visual phrases. Gao et al. [36]
learn category-specific dictionary for each category and shared
dictionary for all the categories. The category-specific dictionar-
ies encode subtle visual differences among different categories,
while the shared dictionary encodes common visual patterns
among all the categories.

Recently, CNN features have achieved a breakthrough on a
large number of benchmarks. Most approaches choose the out-
put of a CNN as feature representation directly [6], [7], [24], [9].
However, CNN features still preserve a great deal of global spa-
tial information. As demonstrated in [37], the activations from
the fifth max-pooling layer can be reconstructed to form an im-
age that looks very similar to the original one. The requirements
of invariance to translation and rotation are weakly ensured by
max-pooling. Though max-pooling helps improve invariance
to small-scale deformations, invariance to larger-scale defor-
mations might be undermined by the preserved global spatial
information. To solve this issue, Gong et al. [38] propose to
aggregate features of the fully connected layers via orderless
VLAD pooling. Considering deeper layers are more domain
specific and potentially less transferable than shallower layers,
Cimpoi et al. [12] pool features from the convolutional layers,
and achieve considerable improvements for texture recognition.

Our approach regards responses from deep CNN neurons as
local descriptors (similar to SIFT), and encodes these local-
ized responses via Fisher Vectors. Different from previous ap-
proaches that encode CNN descriptors globally [12], [38], we
project each response back to the original image and encode each
part separately. Most importantly, we propose a picking strategy
which conditionally selects responses based on their importance
for recognition, and encodes them via spatially weighted com-
bination of Fisher Vectors.

III. DETECTOR LEARNING: PICKING NEURONS FOR

LOCALIZATION

In this section, we target at learning a collection of detectors
that could automatically discover discriminative object/parts.
The strategy consists of two modules: positive sample initial-
ization and regularized multiple instance detector learning. The
first module generates initial sample groups, each of which is
defined by a set of potentially positive samples of image patches.
In the second module, we train detectors for each group with
a regularized learning strategy, which iteratively updates posi-
tive samples via cross-validation, and meanwhile considers the
reliability of each positive sample.

A. Picking Distinctive Neurons

Learning a detector requires a set of positive and negative ex-
amples, which should be identified in the training data. Different
from previous methods, we develop a picking strategy which
elaborately selects distinctive and consistent patches based on
the responses of CNN neural activations. The key insight is that
different layers of a CNN are sensitive to specific patterns, i.e.,
the initial lower layers often respond to corners and edge con-
junctions, while the latter layers often correspond to more and
more macro regions, from semantically meaningful parts to the
whole object. In a sense, these deep neurons work as part detec-
tors and the feature maps serve similar roles as detection scores.
However, these part detectors are usually weak, and most of
them are irrelevant to the fine-grained task. In order to adapt the
pretrained network to the target domain, we continue stochastic
gradient descent to fine-tune the CNN filters. We defer the de-
tails of network fine-tuning in Section VI and focus on positive
sample mining in this section.

A typical CNN consists of several types of layers, e.g., convo-
lutional, pooling, and fully connected layers. The convolutional
layers are composed of several convolutional kernels to compute
feature maps, and each neuron of a feature map is connected to a
neighborhood of neurons in previous layer. The fully connected
layers take all neurons in previous layers and connect them to
every single neuron of current layer to perform global reason-
ing, while the pooling layers lower the computational burden of
a CNN by reducing the number of connections between con-
volutional layers. For brief narrations, we refer the output of
a CNN at the convolutional layers as conv layers (e.g., conv5
for the 5th convolutional layers), and fully connect layers as fc
layers (e.g., fc7 for the 7th fully connected layers). According
to the response properties of different patches, we discuss the
mining process from two aspects, i.e., object-level positives and
part-level positives.

1) Object-Level Positives: The object-level positive samples
are obtained via the last soft-max regression layer of the fine-
tuned network, which indicates how likely a proposal belongs
to the corresponding subcategory. Given a training image I with
label y (y ∈ {1, 2, ..., N}), we first generate T region proposals
X = {x1 , ..., xT } with selective search [39]. Define the last
regression layer output of a patch xi as freg (xi) and its value at
dimension y as freg (xi, y). The potential object-level positive
xo of image I is defined as the patch with the maximum response
at dimension y

xo = arg max
xi ∈X

freg (xi, y). (1)

2) Part-Level Positives: The part-level positives cannot be
obtained directly as the object-level ones, since they are not
trained explicitly. Fortunately, the intermediate CNN neurons
show clustering characteristics, i.e., there exist some neurons
in the intermediate layers that are sensitive to the same part of
an object (e.g., head of birds), and some others to another part
(e.g., body of birds). However, only some of the neurons are
responsible for our target parts [40], [41].

In order to find which neurons are distinctive for part dis-
covery, we first generate a large pool of region proposals, and
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Fig. 3. Response distributions of the top scored 100K patches among ran-
domly sampled one million patches from CUB-200-2011 (AlexNet, 256 chan-
nels). The top scored responses only focus on a few neuron channels, and we
denote these channels as distinctive neurons. On the right we illustrate sev-
eral top responding patches corresponding to the distinctive and non-distinctive
neurons.

randomly sample one million patches. Each proposal is resized
to a target size (e.g., 139 × 139 for AlexNet) to make the acti-
vation output of the last convolutional layer a single value per
channel (similar to detection score). Then, we sort these patches
by responses over all channels and pick the top scored 100 K
patches. These responses are binned into corresponding chan-
nels according to which channel they respond most to. Finally,
we get a response distribution of the top scored 100 K patches.
As shown in Fig. 3, the response distributions are sparse, with
most responses focusing on only a few channels (e.g., for CUB-
200-2011, over 90% responses focus on the top 10% neural
channels). We refer to the channels as distinctive neurons. In
our experiment, the channels that include the top 90% responses
are selected as distinctive neurons F .

Although these picked neurons F are distinctive, they are
rather weak and redundant, and we do not consider each single
neuron performs well in detection. Inspired by the boosting al-
gorithm in face detection [42], we aim to aggregate these weak
neurons to boost detection performance for better initialization.
We sort the distinctive neurons F via the quantity of responses
over the top scored 100 K patches, and process them orderly.
Specifically, for each neuron Fd (Fd ∈F) we find its k-nearest
neighbors Nk (Fd) (Nk (Fd)∈F) in terms of cosine similarity
and group them into a cluster. Every processed neuron Fd to-
gether with its k-nearest neighbors Nk (Fd) are removed out of
the queue. This procedure is repeated until no neuron exists in
the queue. Formally, denote the convolutional output of a patch
xi at channel c as fconv (xi, c), the potential part positive xp

corresponding to distinctive neuron Fd is obtained by

xp = arg max
xi ∈X

∑

Fc ∈Nk (Fd )

fconv (xi, c). (2)

The two-level initialization procedure is illustrated in Fig. 4.
It shows that the initialization method can generate visually
consistent patches, which is helpful for the following detector
learning. On the contrary, k-means clustering usually behaves
poorly in high dimensional space, producing visually inhomo-
geneous groups (shown Fig. 4). Moreover, in order to ensure
the purity within each cluster, there are usually thousands of

clusters [29], [30], which increases the complexity of the de-
tector learning. As a comparison, our proposed initialization
strategy only produces dozens of clusters, which is far less than
that of k-means.

The neuron clustering is an extension of previous work [13],
which reduces the number of detectors to be learned signifi-
cantly. Before neuron clustering, the number ofF usually ranges
from 20 to 50, and varies according to different datasets and
models. After neuron clustering process, the number of clusters
feeded to MIL framework usually ranges from 10 to 20, e.g.,
for CUB-200-2011, the number of selected distinctive neurons
is 27, after neuron clustering, we only need to learn 11 part de-
tectors. While in [13], the number of detectors needed to learn
is 27 (one detector for one neuron).

B. Regularized Multiple Instance Detector Learning

Given the initial positives with (1) or (2), we are able to
learn the corresponding detector by explicitly optimizing a lin-
ear SVM classifier [23]. However, such a paradigm brings about
two issues. First, due to the lack of annotations, the initial pos-
itives are not very good to begin with. Second, these initial
positives often come from a few subcategories that are dis-
criminative. Nevertheless, due to the large inter-class variations
among subcategories, if a detector does not see any positive
sample of one subcategory, it would localize badly on that one.
On the other hand, including patches that do not correspond to
the same part as the exemplars will decrease the localization and
discrimination power of the part model.

To address these issues, we formulate the weakly supervised
detector learning as a multiple instance learning (MIL) [28]
problem, which aims at learning a more generalized detector.
The initial positive samples are refined by an iterative update
strategy which aims at mining better positive samples. Towards
this goal, different from standard MIL which is based on alter-
natively selecting the highest detections as positive samples and
refining the model on the same dataset, we employ a two-fold
cross-validation to avoid overfitting the initial positive samples.
Furthermore, since the mined positives are not equally reliable,
a regularized strategy is introduced to measure the reliability of
each positive sample. Different from [13] which simply mines
per-category positive samples at each round of detector learning
heuristically, we define the detector learning in a formal way,
and prove a detailed analysis of the advantages of the proposed
method.

Defining positive and negative bags: To use MIL for fine-
grained detector learning, we divide the instances of each image
into two bags, the positive bag that includes potential positive
instances, and the negative bag that contains no or only a frac-
tionlet of the object. We make use of the last regression output
[defined in (1)] for defining the negatives. The patches with
scores below a threshold (set as 0.2 for all experiments) are
treated as negative instances and grouped as the negative bag,
while all other instances are grouped as the positive bag. In the
following, we define the problem in a formal way.

Problem formulation: LetX be the set of training bags, which
consists of a set of positive bags Xp and negative bags Xn , i.e.,
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Fig. 4. Two-level initialization based on neuron selectivity. Our method can generate visually consistent patches, which is helpful for the following detector
learning. On the contrary, clustering by k-means usually behaves poorly in high dimensional space, producing visually inhomogeneous groups.

X = Xp ∪ Xn . Let X be a bag of instances from an image.
For any instance x ∈ X from a bag X ⊆ X , denote the corre-
sponding feature vector as φ(x). The regularized MIL detector
learning problem can be formulated as solving the following
objective:

min
1
2
||w||2 + C

∑

X⊆Xp

ΔX ξX + C
∑

x∈Xn

ξx

s.t. wT Φ(X, zX ) + b ≥ 1 − ξX , ∀X ⊆ Xp ,

wT φ(x) + b ≤ −1 + ξx, ∀x ∈ Xn ,

ξX ≥ 0, ξx ≥ 0, ∀X ⊆ Xp ,∀x ∈ Xn (3)

where zX indicates the location in X with maximum response:
zX = argmaxz∈X (wT Φ(X, z) + b), and ΔX is the latent vari-
able which measures the positiveness of a bag X ⊆ Xp . ξX , ξx

are the slack variables, and C is the control parameter of the
loss term. In this formulation, only one instance per positive
bag matters, while all the negative instances are taken into con-
sideration.

Optimization: The regularized MIL leads to a non-convex op-
timization problem due to the introduction of the latent location
variable zX and the latent confidence variable ΔX . However,
this problem is semi-convex since the optimization problem
becomes convex once these latent variables are fixed. In the fol-
lowing, we solve (3) via an iterative procedure which alternates
between updating the latent variables zX , ΔX and optimizing
the detector w. In order to avoid overfitting the initial positive
samples when updating and optimizing are performed on the
same dataset, we introduce cross-validation which optimizes
detector on one subset and updates latent variables on the other
disjoint subset.

Specifically, the training set D is equally divided into two
disjoint and complementary subsets D1 and D2 . Given the ini-
tial positives on D1 [obtained with (1) and (2)], we first train
a standard SVM detector wD1 = w0 . Then the detector w is
refined via iteratively Updating latent variables and Optimizing
(3).

1) Updating: The latent variables on D2 are determined
by previous round detector wD1 trained on D1 , i.e., zX =
argmaxz∈X (wT

D1
Φ(X, z) + b), ΔX = σ[wT

D1
Φ(X, zX ) + b],

Algorithm 1: Regularized Multiple Instance Detector
Learning
Require: Disjoint training set D1 and D2 ;

Initialization: Select initial positive samples with (1) or
(2), and train standard SVM detector w0 .
Learning: Given wD1 = w0 , solving the regularized MIL
issue in (3) via iteratively updating and optimizing on D1
and D2 .
a). Updating: fix latent variables on D2 via wD1 , i.e.,
zX =argmaxz∈X (wT

D1
Φ(X, z)+b),

ΔX =σ[wT
D1

Φ(X, zX )+b].
b). Optimizing: solving (3) on D2 with updated latent
variables. Then switch D1 and D2 .

Ensure: Detector wD1 .

where σ is a sigmoid function which maps the value into the
range of (0, 1).

2) Optimizing: The detector is optimized according to the
fixed latent variables on D2 via hard negative mining [23].

After each round of Updating and Optimizing, we switch
D1 and D2 for further iteration. The whole detector learning
strategy is summarized in Algorithm 1.

Corollary: The solution w of (3) is a linear combination of
the positive samples φ(X, zX ) and the negative samples φ(x),
i.e., w =

∑
X⊆Xp

αX φ(X, zX ) +
∑

x∈Xn
αxφ(x), where the

coefficients αX and αx are bounded by: 0 ≤ αX ≤ CΔX ,
0 ≤ αx ≤ C, respectively.

Proof: The constrained minimization problem in (3) can be
solved with a classical Lagrangian method. The Lagrangian
operator can be represented as

L =
1
2
||w||2 + C

∑

X⊆Xp

ΔX ξX + C
∑

x∈Xn

ξx

+ αx(wT φ(x) + b + 1 − ξx) −
∑

x∈Xn

γxξx

− αX (wT Φ(X, zX ) + b − 1 + ξX ) −
∑

X⊆Xp

γX ξX

(4)
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Fig. 5. Illustration of separating hyperplane in the feature space for SVM
with regularized loss. The circles represent positive samples and the crosses
represent negative ones. Support vectors are weighted by ΔX which measures
the reliability of detection in previous round.

where αX , αx , γX , and γx denote Lagrange multipliers. The
minimization of Lagrangian operator in (4) with respect to
w, ξX , ξx is
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂w
= 0 ⇒ w =

∑
X⊆Xp

αX φ(X, zX ) − ∑
x∈Xn

αxφ(x),

∂L

∂ξX
= 0 ⇒ γX = ΔX C − αX ,

∂L

∂ξx
= 0 ⇒ γx = C − αx.

(5)
Due to the nonnegativity of γX and γx , we have 0 ≤ αX ≤
CΔX and 0 ≤ αx ≤ C. For a test example x̃, the detection
score can be represented as

f(x̃)=

⎛

⎝
∑

X⊆Xp

αX φ(X, zX )−
∑

x∈Xn

αxφ(x)

⎞

⎠ φ(x̃) + b. (6)

It can be seen that the final detection score f(x̃) is a weighted
combination of the inner product between training features
φ(X, zX ), φ(x) and test feature φ(x̃), and is only determined by
samples with nonzero coefficients αi (i = X,x). These αi s are
called support vectors, since they are the only training samples
necessary to define the separating hyperplane. Note that for pos-
itive samples αX is bounded by CΔX , with KKT conditions,
it is also possible to see when an example is a support vector,
this happens only if the example is on the margin, or it does
not respect the separation conditions in (3). According to [43],
the coefficient αX for positive samples in different locations is
defined as

⎧
⎨

⎩

αX = 0, wT φ(xZ ) + b > 1,
αX = CΔX , wT φ(xZ ) + b < 1,
0 < αX < CΔX , wT φ(xZ ) + b = 1.

(7)

As shown in Fig. 5, for positive samples that do not respect
the classification hyperplane, the corresponding coefficient αX

is bounded by CΔX , which takes the reliability of zX into con-
sideration. The regularized term ΔX helps to boost the detection
performance. If a positive sample zX is not reliable at previous
round, its contribution to the classification hyperplane at current

round would be lowered. MIL introduces more diverse samples
for detector learning, while the regularized term encourages the
detector focusing on positive samples that are good enough and
downweighting those samples with lower reliability.

IV. SWFV-CNN: PICKING NEURONS FOR DESCRIPTION

With the above trained detectors, we can identify correspond-
ing parts from each image. One intuitive method for part de-
scription is to directly extract features from the penultimate
Fully-Connected (FC) layer of a CNN, which is widely used in
previous methods. However, FC-CNN is not suitable to describe
fine-grained details for two reasons. First, FC-CNN captures the
spatial layout of an image, which is useful for representing the
shape of an object, while it may be not useful for describing
fine-grained details. Second, FC-CNN requires a fixed rectan-
gle as input, which includes cluttered background inevitably.
To deal with the first issue, we regard CNN activations as lo-
cal descriptors [12] (similar to SIFT), and orderless pool these
descriptors via Fisher Vector coding, which is apt at describing
fine-grained details. For the second issue, a saliency map is uti-
lized to pool CNN descriptors with Spatially Weighted Fisher
Vectors (SWFV-CNN), which downweights the influences of
the backgrounds.

A. Spatially Weighted FV-CNN

We give a brief introduction to Fisher Vectors for convenient
narrations, and more details can be found in [44]. Let uλ be a
probability density function which models the generative pro-
cess of descriptors across the dataset, and X ={xt , t=1, ..., T}
be a set of T local descriptors extracted from an image. The
Fisher Vector is defined by the gradient of the log-likelihood of
X on the model

G X
λ = LλG

X
λ =

1
T

Lλ

T∑

i=1

∇λ log μλ(xt) (8)

where Lλ is the square-root of the inverse of the Fisher in-
formation matrix, which can be treated as a scale factor of
the gradient vector. In our case, μλ is chosen as a gaussian
mixture model with parameter λ={wk ,μk ,σk :k = 1, ...,K}.
Let γt(k) be the posterior probability of each vector xt to
a mode k in the mixture model. The Fisher Vector G X

λ =
[G X

μ1
, ...,G X

μK
,G X

σ1
, ...,G X

σK
], which is the stacking of mean

derivation vectors G X
μk

and covariance deviation vectors G X
σk

for each of the K modes. Each entry of G X
μk

and G X
σk

can be
rewritten as follows:

G X
μk

=
1
T

T∑

i=1

G xt
μk

=
1

T
√

wk

T∑

i=1

γt(k)
(

xt−μk

σk

)

G X
σk

=
1
T

T∑

i=1

G xt
σk

=
1

T
√

2wk

T∑

i=1

γt(k)
[
(xt−μk )2

σ2
k

−1
] (9)

where the division should be understood as term-by-term oper-
ations. We formulate G X

μk
and G X

σk
as accumulated average of

the first and second order statistics of x, respectively. However,
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this kind of representation considers each xt equally impor-
tant, which is often not the case. The vector xt may lie in
non-salient regions. Considering this issue, a spatially weighted
term Is(pt) ( pt denotes the receptive field center of descriptor
xt) is introduced for each vector xt , which indicates the im-
portance of xt . The weighted results of G̃ X

μk
and G̃ X

σk
can be

expressed as

G̃ X
μk

=
T∑

i=1

Is(pt)G xt
μk

, G̃ X
σk

=
T∑

i=1

Is(pt)G xt
σk

. (10)

The weight term Is is simply chosen as the saliency map [45] of
an image, which indicates how likely a pixel belongs to salient
regions. Since fine-grained images are not cluttered with many
objects, and the object of interest is always the most salient
region. The introduced spatial weights are able to catch the
important details for recognition.

B. Distribution Analysis of SWFV-CNN

The proposed SWFV-CNN is a weighted version of FV-
CNN, which is simple but effective. In this section, we provide
one interpretation to explain why such a weighted combina-
tion can lead to improved results. Following [44], for a given
image, we assume that the local descriptors can be decom-
posed into a mixture of two parts: an image independent back-
ground which follows the distribution μλ and an image specific
part with distribution q. Let ω ∈ [0, 1] be the portion of image
specific information, the generative model can be rewritten as:
p(X) = ωq(X) + (1−ω)μλ(X), hence we have

lim
T →∞

GX
λ ≈ ω∇λEX∼q log μλ(X)

+ (1 − ω)∇λEX∼μλ
log μλ(X) (11)

the second background term can be canceled out via a maximum
likelihood estimation of parameter λ, which shows that Fisher
Vectors discard the image independent information implicitly.
However, the distribution depends on the image-specific pro-
portion ω. This signifies that even for two images containing
the same object but different scales, Fisher Vectors will have
different signatures. Hence, the class separability is degraded
by ω. Based on this observation, we introduce a saliency map
which cancels the effect of ω, since we only pick descriptors
focused on salient regions, then we have ω ≈ 1 for all images.

V. EXPERIMENTS

A. Datasets

The empirical evaluation is performed on four fine-grained
benchmarks: Caltech-UCSD Birds-200-2011 [16], Stanford
Dogs [17], Aircraft [15], and Cars-196 [14], which are the
most extensive and competitive datasets in fine-grained liter-
ature. Each dataset is endowed with specific statistic properties,
which is crucial for recognition performance.

CUB-200-2011: This is the most widely used fine-grained
dataset, which contains 11,788 images spanning 200 bird sub-
species. Birds species are highly deformable, and usually occupy

a small portion of the image area, which make the recognition
challenging.

Stanford Dogs: This is a collection of dog species, which
consists of 20,580 images with 120 classes. Compared with
Birds dataset, the dogs in this dataset are more deformable,
and usually suffers from partial occlusion and more complex
backgrounds. Indeed, Dogs dataset is the most difficult one
among the four datasets.

Aircraft: The dataset Aircraft is compound of 100 variants
of airplanes with a total of 10,000 images. The task involves
discriminating variants of a model such as Boeing 737–300
and 737–400, etc. Unlike birds and dogs, airplanes are rigid
objects, and tend to occupy a long and narrow area of the image.
Furthermore, the background is relatively clean, e.g., always sky
or airport.

Cars-196: The dataset Cars-196 contains 16,185 images of
196 classes of cars, which are produced by different manufactur-
ers. Similar to airplanes, cars are also rigid objects, which makes
detection more feasible. Anther property is that cars usually oc-
cupy a relatively larger portion of areas in an image comparing
with the above three datasets.

B. Network

1) Supervised Pre-training: Two typical network models are
used in our experiments: AlexNet [46] and the more accurate but
deeper one VGG-VD [47]. Note that for Stanford Dogs, since
the complete dataset is a training subset of ILSVRC 2012, sim-
ply choosing the pre-trained network brings about cross-dataset
redundancy. Considering this issue, we check ILSVRC 2012
training data and remove samples that are used as test in Dogs,
then we train a network from scratch to obtain the model specific
to Dogs. The pretrained network (AlexNet) nearly matches the
performance of [46], obtaining a top-1 error rate of 44.2% on
ILSVRC 2012 validation set.

2) Fine-Tuning With Saliency-Based Sampling: Fine-tuning
is beneficial to adapt the network pretrained on ImageNet to
the fine-grained tasks. Since fine-grained labels are expensive
to obtain, most existing fine-grained datasets only contain a
few thousand training samples, which is far from enough for
fine-tuning. A common strategy is to introduce many “jittered”
samples around the ground truth bounding box [23]. Instead, we
develop a saliency-based sampling strategy to augment training
samples, which does not need such annotations. The princi-
ple is based on the specific property of fine-grained datasets
that the image is not cluttered with too many objects, and the
object of interest is always the most salient regions. To this
end, a saliency map Is [45] of image I is computed, and for
each region proposal xi ∈ X , the saliency score s(xi | Is) is
defined as

s(xi | Is) =
∑

Is(xi)∑
Is

(12)

where
∑

Is(xi) denotes the sum of the pixels within xi . The
patches with saliency scores above a threshold (set as 0.7) are
defined as augmented samples, which expands the samples by
approximately 20×. Table I shows the recognition results of the
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TABLE I
RECOGNITION RESULTS OF THE SALIENCY-BASED FINE-TUNING

METHOD ON NETWORKS ALEXNET [46] AND VGG-VD [47]

Dataset AlexNet VGG-VD

Original fine-tune Original fine-tune

CUB-200-2011 57.0 61.7 66.6 74.0
Stanford Dogs 59.6 59.7 – –
Aircraft 65.3 70.9 70.1 82.6
Cars-196 56.9 70.4 64.4 85.6

Accuracies are based on features (FC-CNN) extracted directly from
the whole images.

fine-tuned networks. We observe that fine-tuning with saliency-
based sampling consistently outperforms the pre-trained
network, which indicates that for fine-grained datasets, bound-
ing box information is unnecessary for network fine-tuning. The
only exception is for Stanford Dogs, since the target training data
is already included in the ImageNet data.

C. Implementation Details

Parameter settings: The k nearest neighbors in (2) is set to
be 5. For both object-level and part-level positives, we choose
the top 5% scored patches for initialization. In Section III, the
pool5 features are chosen for detector training. In practice,
the iteration process converges within several times, and we
set the iteration times as 7. These parameters are fixed for all
datasets for easy implementation.

FC-CNN: FC-CNN is extracted from the penultimate Fully-
Connected (FC) layer of a CNN. The input image is resized to
fixed size with mean subtracted before propagating through the
CNN. similar to [46], FC-CNN is extracted from 10 view crops
and then averaged for final representation.

FV-CNN: FV-CNN pools CNN features with Fisher Vectors.
We extract conv5 descriptors (256-d for AlexNet, and 512-d for
VGG-VD) at 3 scales (s = {256, 384, 512}), with each image
rescaled to the target size so that min (w, h) = s. We reduce
the dimension of the descriptors to 80-d by PCA transforma-
tion and pool them into a FV representation with 256 Gaussian
components, resulting in 40 K-d features. In practice, the conv5
descriptors are mapped back to the original image (the map-
ping in [48] is used), and each detected part is pooled into FV
separately.

Feature combination: Since FV-CNN is high dimensional,
combination of FV-CNN from different parts results in tremen-
dously high dimensional features. To ease this issue, we adopt
the method of [49] to learn one-vs-all features per part, and con-
catenate the learned features after normalization. The dimen-
sion of one-vs-all features scales with the number of categories,
which is far less than that of FV-CNN.

Evaluation measurement: A conventional one-vs-all linear
SVM is used for final classification. For accuracy evaluation, we
use the default training/test split of the corresponding datasets,
and choose the standard metric, i.e., the average classification
accuracy by categories.

Fig. 6. Recognition performance when different number of detectors are
added in. Number 0 refers to baseline without parts. Features are based on
AlexNet with FC-CNN.

D. Ablation Study

1) Performance versus number of detectors: Our algorithm
produces several to a dozen detectors, and there is no
guarantee that these detectors will not return poor lo-
calization. In order to discard those detectors that are
poorly localized, we measure the discriminative power
of each detector in terms of recognition accuracy. Specif-
ically, we equally divide the training set into two disjoint
subsets, and perform cross-validation to measure the dis-
criminative power of each detector. For each detector,
classification is performed on the top scored regions, and
the detectors are sorted based on their recognition accu-
racy. For final recognition, we progressively add the sorted
detectors to uncover how it affects the performance. As
shown in Fig. 6, the performance improves fast when the
first several detectors are added in, while it tends to be
stable and eventually drops as the number of detectors
grows. It is intuitive that the bad detectors degrade the
performance. For simplicity, we discard detectors that de-
grade the performance (e.g., the number of detector for
Stanford Dogs is 4) and follow these settings for further
experiments.
Comparing with [13] which only considers the part posi-
tives via the intermediate convolutional layers, we added
the object-level positives via the last regression layer. Ex-
perimental results show that the introduction of object
detectors improves the recognition results. We have reim-
plemented [13] with AlexNet model, and the improvement
is obvious, e.g., for CUB-200-2011, previous method [13]
achieves an accuracy of 72.1% with FC-CNN, which is
inferior to the result of using additional object detector
(74.5%).

2) Probe performance step by step: To understand which step
is critical for recognition, we analyze results on CUB-
200-2011 with different variants. As shown in Fig. 7,
we set the number of detectors as 5 for fair comparisons
(c.f. Fig. 6, which achieves the highest performance). The
baseline denotes the method extracting features from the
whole image, without any object/part information, and
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Fig. 7. Performance comparisons of different variants on CUB-200-2011.
Features are based on AlexNet with FC-CNN.

used the features for recognition. As a comparison, w/o
pick (w/pick) represents detection directly based on all
neurons (picked neurons), MIL is the standard multiple
instance learning method, and r-MIL is the regularized
MIL strategy. The performance improves from 68.2% to
71.6% after neuron picking, which demonstrates the ne-
cessity of the picking strategy. As a matter of fact, the
intermediate neurons are implicitly trained, and there is
no guarantee that all the neurons serve as part detectors.
It has been demonstrated that only a small portion of neu-
rons emerge as semantic part detectors (e.g., 34 out of 123
on Pascal VOC 2007) even after network fine-tuning with
ground truth part annotations [40]. On the other hand, the
proposed regularized MIL (74.5%) achieves better perfor-
mance than detector learning with standard MIL (72.9%),
which demonstrates the effectiveness of the proposed de-
tector learning strategy.
Fig. 8 shows some detection results of the learned
detectors. We represent detections with red for discovered
whole object and other colors for parts, and overlay them
on the original image for better visualization. These
detections exhibit surprisingly good visual consistency
even without annotated training samples. For birds, they
fire consistently on some visual meaningful structures
such as head and body. While for dogs, they usually focus
around head, mainly because other parts are either highly
deformable or partially occluded. For rigid objects such
as airplanes and cars, detections perform better. The dis-
covered parts focus on the head, body, and tail of airplanes
surprisingly well, and mainly concentrate on the head
of cars. As a comparison, we also show the detections
directly returned by the clustered neurons (the bottom
row for each dataset), which is similar to the method [9].
These neurons usually return inferior localizations, which
demonstrates the effectiveness of our part detectors. Note
that these detectors are redundant (e.g., both detectors
respond to the head of dogs) to some extent. However,
their features have different representation and can enrich
each other.

E. Fine-Grained Recognition Results

The performance of part detection can be further demon-
strated in terms of recognition accuracy. As shown in Table II,

we perform detailed analysis by comparing different variants of
our method. “BL” refers to the baseline method, which extracts
features directly from the whole image, without any knowledge
of object or parts. “PD” refers to the proposed part detection
method (Section III), and “SWFV-CNN” refers to the spatially
weighted FV-CNN method (Section IV).

Due to the introduction of FOAF [49], the feature dimension
scales with the number of categories. The advantage is that it
reduces the classifier training time, e.g., for CUB-200-2011,
the dimension of PD+SWFV-CNN is about 240K, and training
classifier based on the high dimensional feature vector costs
over 6 hours, while the dimension of FOAF is 1.2 K and the
training time costs about 1.5 hours. Let N refer to the number of
categories in each dataset (e.g., N = 200 for CUB-200-2011),
and P refer to the number of feature parts concatenated. For
convenient description, the number of feature parts includes
features extracted from the whole image, the detected object
and parts. Hence it equals 6 (c.f. Fig. 6) for CUB-200-2011, and
is 5 for Stanford Dogs. From Table II we observe that:

1) Part detection boosts the performance significantly. Com-
paring with the baseline, PD brings about a 12.7%
(61.7% → 74.5%) improvement on CUB-200-2011, a
10.4% (59.7% → 70.1%) improvement on Stanford
Dogs. For Aircraft and Cars-196, the corresponding
improvements are 5.4% (70.9% → 76.3%) and 6.7%
(70.4% → 77.1%), respectively. Similar trends can be
found when switching to a more powerful network
VGG-VD.

2) FC-CNN is usually better than FV-CNN. FC-CNN usu-
ally outperforms FV-CNN by a considerable margin, e.g.,
on AlexNet, the differences are 74.5% vs 72.9% on CUB-
200-2011, 70.1% vs 65.1% on Stanford Dogs, and 76.3%
vs 74.4% on Aircraft. This is mainly because FV-CNN
usually includes background information, which is con-
fusing for fine-grained recognition, while FC-CNN alle-
viates this influence by max-pooling. The performance
gap is large for Stanford Dogs, probably due to the fact
dogs are usually with more cluttered backgrounds in this
dataset. The only exception is for Cars-196, where FV-
CNN is in turn better than FC-CNN (80.1% vs 77.1%).
This is because in this dataset cars usually occupy a large
portion of image and the background is relatively clean.

3) SWFV-CNN performs consistently better than FV-CNN,
and even better than FC-CNN. We find that SWFV-CNN
brings about at most over 4% improvement comparing
with FV-CNN (65.1% → 69.3% on Stanford Dogs), and
is even better than FC-CNN (e.g., on CUB-200-2011). The
reason is that SWFV-CNN only focuses on features that
are important for recognition, and deemphasizes those
that are not helpful. The results demonstrate that com-
paring with FV-CNN, SWFV-CNN is more suitable for
fine-grained recognition.

4) SWFV-CNN complements with FC-CNN. SWFV-CNN
treats features as local descriptors and encodes them via
orderless pooling, while FC-CNN represents images glob-
ally and still preserves rough spatial layout of images. The
above properties make the two features complementary
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Fig. 8. Sample detection results of the learned detectors on four fine-grained datasets. We represent detections with red for discovered whole object and other
colors for parts, and overlay them on the original image for better visualization. As a comparison, We also show the detections directly returned by the picked
filters (the bottom row for each dataset), which is similar to the method of [9]. Note that different detectors may return very similar results, which makes some part
illustration be overwhelmed. The last two columns show some failure cases.

TABLE II
RECOGNITION RESULTS OF DIFFERENT VARIANTS OF OUR METHOD

Method Dim. CUB-200-2011 Stanford Dogs Aircraft Cars-196

AlexNet VGG-VD AlexNet AlexNet VGG-VD AlexNet VGG-VD

FC-CNN BL N 61.7 74.0 59.7 70.9 82.6 70.4 85.6
FV-CNN BL N 56.3 70.2 60.5 65.8 81.4 76.1 89.0
FC+FV-CNN BL 2N 66.0 74.8 63.8 72.3 84.7 79.5 89.3
PD+FC-CNN NP 74.5 83.3 70.1 76.3 84.0 77.1 88.8
PD+FV-CNN NP 72.9 79.8 65.1 74.4 83.4 80.1 89.2
PD+SWFV-CNN NP 75.6 83.7 69.3 77.8 85.4 82.5 91.1
PD+FC+SWFV-CNN 2NP 77.1 84.7 72.4 78.8 87.3 83.8 91.7

“BL” refers to baseline which extracts features directly from the whole image. “PD” refers to part detection in Section III, and
“SWFV-CNN” refers to the spatially weighted FV-CNN in Section IV. “N” refers to the number of categories in each dataset, and
“P” refers to the number of feature parts.
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TABLE III
RECOGNITION PERFORMANCE COMPARISONS ON CUB-200-2011

Method Anno. Accuracy(%)

Train Test Alex VGG-VD

Ours PNA n/a n/a 77.1 84.7
PN-CNN [24] bbox + parts n/a 75.7 –
Part R-CNN [7] bbox + parts n/a 73.9 –
PS-CNN [22] bbox + parts bbox – 76.2
SPDA-CNN [4] bbox + parts bbox 81.0 85.1
PG Alignment [6] bbox bbox 74.9 82.8
NAC [10] n/a n/a 68.5 81.0
TL Atten. [9] n/a n/a 69.7 77.9
STN [27] n/a n/a 84.1
Bilinear CNN [11] n/a n/a 84.1

“n/a” refers to not available, while “bbox” and “parts” refer to object
bounding box and part annotations.

with each other. Experimental results show that it brings
about 1%∼3% improvement when combining SWFV-
CNN with FC-CNN. We obtain an accuracy of 77.1% on
Birds, 72.4% on Dogs, 78.8% on Aircraft, and 83.8% on
Cars-196. Replacing AlexNet with VGG-VD improves
the performance in all the cases, with a final accuracy
of 84.7% for Birds, 87.3% for Aircraft, and 91.7% for
Cars-196.

F. Comparisons With Prior Methods

We now move on to compare our results with some typical
previous methods. Each dataset is provided with object annota-
tions, which are more or less used in most previous methods. We
categorize each method according to whether the annotations
are used at train/test time, which influences the performance
significantly.

CUB-200-2011: Table III shows the comparison results of
our method with prior approaches on CUB-200-2011. There
are a large number of previous approaches reporting results on
this dataset, we only include results with CNN features for fair
comparisons. Most previous approaches rely on object-level or
even part-level annotations for recognition [4], [7], [24]. Our
approach is better than those methods which rely on object-
level [6] or even part-level [7], [22] annotations, and is 0.4%
worse than [4] (84.7% vs 85.1%) which needs annotations at
both training and test time.

We now compare our results with other methods. We are not
the first to apply CNN neurons for part localization [9], [10].
The differences are that [9] trains the network from scratch and
directly groups all the intermediate neurons for part detection,
which is inferior to our method consisting of two activation pick-
ing steps. [10] constructs neural activation constellation model
by selecting neurons that fire at similar relative locations, which
is similar to deformable part model [25]. However, animals such
as birds and dogs are highly deformable to model, which limits
the recognition performance. Our results (77.1% on AlexNet and
84.7% on VGG-VD) are much better than these two methods
(69.7% on AlexNet and 77.9% on VGG-VD in [9], and 68.5%
on AlexNet and 81.0% on VGG-VD in [10]). Our method is

TABLE IV
RECOGNITION PERFORMANCE COMPARISONS ON STANFORD DOGS

Method Train anno. Test anno. Accuracy

Ours PNA n/a n/a 72.4
Temp. Match [50] bbox bbox 38
Symbolic [2] bbox bbox 45.6
Alignment [33] bbox bbox 57

n/a n/a 49
FOAF [49] bbox bbox 71.6
NAC [10] n/a n/a 68.6

TABLE V
RECOGNITION PERFORMANCE COMPARISONS ON AIRCRAFT

Method Train anno. Test anno. Accuracy

Ours PNA n/a n/a 87.3
Symbolic [2] bbox bbox 75.8
Revisit FV [51] n/a n/a 80.7
Bilinear CNN [11] n/a n/a 84.1
Multi-grained [52] n/a n/a 82.5

TABLE VI
RECOGNITION PERFORMANCE COMPARISONS ON CARS-196

Method Train anno. Test anno. Accuracy

Ours PNA n/a n/a 91.7
Symbolic [2] bbox bbox 78.0
Revisit FV [51] n/a n/a 82.7
Bilinear CNN [11] n/a n/a 91.3
PG Alignment [6] bbox bbox 92.8

also slightly better than the bilinear CNN [11] (84.1%) and the
spatial transform networks [27] (84.1%). However, these two
methods are trained based on much larger networks (448 × 448
input image), and the bilinear networks are the combinations
of two deep models. The results indicate that fully automatic
fine-grained recognition is within reach.

Stanford Dogs: Table IV shows the comparison results on
Dogs. Few methods report results on this dataset, since off-the-
shelf CNN models cannot be used for feature extraction. The
most comparable result with our method is [10], which also
trains AlexNet model from scratch and obtain an accuracy of
68.6%. Our method improves it by over 3%, with an error rate
reduction of 12.2%.

Aircraft and Cars-196: The comparison results on Aircraft
and Cars-196 are shown in Tables V and VI, respectively. For
Aircraft, our approach brings about an improvement of 3.2%
over the previous best performing method [11]. For cars-196, our
result (91.7%) is comparable with the best performing method
[11] (91.3%) under the same supervision, and a little short (about
1%) of the state-of-the-art results of [6] which uses extra anno-
tations of object at both training and test time.

VI. DISCUSSION

A. Why Bother to Train SVMs After Network Fine-Tuning?

One issue is that: why bother to train SVMs after fine-tuning?
It would be cleaner to simply apply the output of the fine-tuned



2748 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Fig. 9. Top two pairs of subcategories that are most confused with each other in each dataset. In hindsight, these subcategories are difficult for recognition merely
by appearances. (a) CUB-200-2011, (a) CUB-200-2011, (c) Aircraft, and (d) Cars-196.

network as detectors, which is the last soft-max layer for object
and the fifth convolutional layer for parts. We try this setting and
find that performance drops dramatically. For comparison, we
show some detection results directly based on the responses of
the neurons. As shown in Fig. 8, the detectors directly from the
neurons are weak, and in most situations localize inaccurately.
Accordingly, the recognition performance drops considerably,
e.g., when extracting features with FC-CNN on AlexNet, it
drops from 74.5% to 71.6% on CUB-200-2011, and from 70.1%
to 67.9% on Stanford Dogs. The performance differences likely
arise from a combination of several factors. First, the positive
samples used for fine-tuning do not emphasize precise local-
ization and the soft classifier is trained on randomly sampled
negative samples, rather than “hard negative mining” used for
SVM training. Second, the fifth convolutional layer is still much
weaker in part mining than that of the soft-max classifier layer
in object mining, since they are not trained explicitly. Third,
for part initialization, an image patch is resized to the theo-
retical size of the receptive field in conv5 layer, and we hope
that the activation is responsible for the whole patch. However,
as demonstrated in [40], the actual receptive field of conv5 is
much smaller than the theoretical one, which inevitably intro-
duce inaccurate positive samples. Based on these observations,
we mine positive samples by way of boosting weak detectors,
and iteratively train SVMs via regularized loss term to improve
the robustness of detectors.

B. What Are the Limits of Visual Features?

Despite the promising performance achieved by our approach,
there is still a certain gap from practical application, e.g., on
CUB-200-2011, the accuracy 84.7% is much lower than that of
expert birders (93%) [53]. Fig. 9 shows several subcategories
that are the least successful in our results. The failure of classifi-
cation is mainly due to the existence of confusing counterparts,
such as Fish Crow and American Crow, California Gull and Her-
ring Gull. It is hard to tell them apart merely from appearance.
In fact, through the description of Wiki, the main difference
between Fish Crow and American Crow is their voice. The call
of Fish Crow has been described as a nasal ark-ark-ark, while
American Crow is a distinct caw caw. The observations suggest
that fine-grained species classification is a difficult problem and
is not always possible with a single image. In this case, a better
solution may need human intervention such as questions posed
to the users.

VII. CONCLUSION

In this paper, we develop a framework for fine-grained recog-
nition which is free of any object/part annotation at both training
and testing stages. Our method incorporates deep neural acti-
vations for both part localization and description. We claim
two major contributions. Firstly, a picking strategy is utilized
to select distinctive neurons that respond to specific parts sig-
nificantly and consistently. Based on these picked neurons, we
choose positive samples and train a set of discriminative de-
tectors via a regularized multiple instance detector learning.
Secondly, we develop a simple but effective feature encoding
method, which we call SWFV-CNN. SWFV-CNN packs local
CNN descriptors via spatially weighted combination of Fisher
Vectors, which considers the importance of Fisher Vector for
recognition. Integrating the above schemes produces a powerful
framework, and shows notable performance improvements on
several widely used fine-grained datasets.
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